Boundary Driven Open Markov System: A New Mathematical Framework for Nonequilibrium Biochemical Networks

Will Heuett
University of Washington
Department of Applied Mathematics

21 July 2005

Outline

Outline

★ Background and motivation for the new modeling framework

★ The grand canonical model

Outline

- ★ The grand canonical model
- ⋆ Variances and correlations

Outline

- ⋆ The grand canonical model
- ★ Variances and correlations
- ★ Thermodynamics and reaction conductances

Outline

- ⋆ The grand canonical model
- ★ Variances and correlations
- ★ Thermodynamics and reaction conductances
- ★ Conclusions and future work

Outline

- ⋆ The grand canonical model
- ★ Variances and correlations
- ★ Thermodynamics and reaction conductances
- ★ Conclusions and future work

Background and motivation for the new modeling framework

★ The goal is to model the reaction network of a living biochemical system.

Background and motivation for the new modeling framework

★ The goal is to model the reaction network of a living biochemical system.

- ★ Examples of modeling "open" reaction systems are:
 - * motor protein kinetic models
 - * and the Gillespie algorithm for simulations.

Background and motivation for the new modeling framework

★ The goal is to model the reaction network of a living biochemical system.

- ★ Examples of modeling "open" reaction systems are:
 - * motor protein kinetic models
 - * and the Gillespie algorithm for simulations.

★ The grand canonical model has a niche.

The closed network model

Consider an irreducible system of monomolecular biochemical reactions involving N reactants. The dynamics of a single molecule can be modeled as a random walk,

$$\frac{dp_i(t)}{dt} = \sum_{\substack{j=1 \ j \neq i}}^{N} (p_j(t)q_{j,i} - p_i(t)q_{i,j}).$$

Suppose there are a total of n molecules in the closed system. Then we have the joint probability

$$P(n_1, n_2, \dots, n_N, t) = \frac{n!}{n_1! n_2! \cdots n_N!} (p_1(t))^{n_1} (p_2(t))^{n_2} \cdots (p_N(t))^{n_N},$$

i.e. the multinomial distribution.

The closed network model (continued...)

If the system is closed to its surroundings, it will achieve equilibrium in which each reaction must be detailed balanced. Let π_i represent the probability of being in state i at equilibrium, then

$$\frac{\pi_i}{\pi_j} = \frac{q_{j,i}}{q_{i,j}} = K_{eq}$$

$$\frac{q_{i_0,i_1}q_{i_1,i_2}\cdots q_{i_m,i_0}}{q_{i_1,i_0}q_{i_2,i_1}\cdots q_{i_0,i_m}}=1.$$

The detailed balance condition can be broken for "open" systems by fixing external concentrations that are typically absorbed into pseudo-first-order transition rate constants.

Outline

- * The grand canonical model
- ★ Variances and correlations
- ★ Thermodynamics and reaction conductances
- ★ Conclusions and future work

The grand canonical model

Suppose there is an observer doing work on the system by keeping the number of molecules in state 0 equal to 1 and the number in state N+1 equal to 0. The total number of molecules in this system will fluctuate. The expected number of molecules, $\langle n_i(t) \rangle$, at time t in state i satisfies

$$\frac{d\langle n_i(t)\rangle}{dt} = \sum_{\substack{j=0\\j\neq i}}^{N+1} (\langle n_j(t)\rangle q_{j,i} - \langle n_i(t)\rangle q_{i,j})$$

 $\forall i \in \{1, 2, \dots, N\}$. The system is assumed to be empty initially, so the boundary and initial conditions are

BCs:
$$\langle n_0(t) \rangle = 1$$
, $\langle n_{N+1}(t) \rangle = 0$

BCs:
$$\langle n_0(t) \rangle = 1$$
, $\langle n_{N+1}(t) \rangle = 0$
ICs: $\langle n_i(0) \rangle = 0$, $\forall i \in \{1, 2, \dots, N\}$.

The grand canonical model (continued...)

The joint probability function for the open system is

$$P(n_1, n_2, \dots, n_N, t) = \prod_{i=1}^{N} \left[\frac{\langle n_i(t) \rangle^{n_i}}{n_i!} e^{-\langle n_i(t) \rangle} \right]$$

which means that the number of molecules in each state is independent and these random variables each have Poisson distributions.

Outline

- ★ Background and motivation for the new modeling framework
- ⋆ The grand canonical model
- * Variances and correlations
- ★ Thermodynamics and reaction conductances
- ★ Conclusions and future work

Variances and correlations

Let $\langle n_i \rangle^*$ be the number of molecules in state i when the system is in NESS and $\Delta n_i \triangleq n_i - \langle n_i \rangle^*$. It can be shown that the variances and covariances must satisfy

$$\frac{d \left\langle (\Delta n_i(t))^2 \right\rangle}{dt} = \sum_{\substack{j=0 \ j \neq i}}^{N+1} \left[\left(\langle n_j(t) \rangle + 2 \left\langle \Delta n_i(t) \Delta n_j(t) \right\rangle \right) q_{j,i} \right. \\
+ \left(\langle n_i(t) \rangle - 2 \left\langle (\Delta n_i(t))^2 \right\rangle \right) q_{i,j} \right] \\
\frac{d \left\langle \Delta n_i(t) \Delta n_j(t) \right\rangle}{dt} = \sum_{\substack{k=0 \ k \neq i}}^{N+1} \left(\left\langle \Delta n_j(t) \Delta n_k(t) \right\rangle q_{k,i} - \left\langle \Delta n_i(t) \Delta n_j(t) \right\rangle q_{i,k} \right) \\
+ \sum_{\substack{k=0 \ k \neq j}}^{N+1} \left(\left\langle \Delta n_i(t) \Delta n_k(t) \right\rangle q_{k,j} - \left\langle \Delta n_i(t) \Delta n_j(t) \right\rangle q_{j,k} \right) \\
- \left\langle n_i(t) \right\rangle q_{i,j} - \left\langle n_j(t) \right\rangle q_{j,i}.$$

Variances and correlations (continued...)

The nonhomogeneous system of ODEs of the means can be rewritten as a homogeneous system of ordinary differential equations by substituting $n_i(t) = \Delta n_i(t) + \langle n_i \rangle^*$. In matrix form, the resulting system is written as

$$\frac{d\langle \Delta \mathbf{n}(t) \rangle}{dt} = \mathbf{Q} \langle \Delta \mathbf{n}(t) \rangle.$$

Using the solution of this system, the autocorrelation and cross-correlation functions of the number of molecules in each state can be shown to be

$$\langle \Delta n_i(t) \Delta n_i(0) \rangle = e_{i,i}^{\mathsf{Q}t} \langle n_i \rangle^* = \sum_{k=1}^N \left(\mathsf{V}_{i,k} e^{\lambda_k t} \mathsf{V}_{k,i}^{-1} \langle n_i \rangle^* \right)$$

$$\langle \Delta n_j(t) \Delta n_i(0) \rangle = e_{j,i}^{\mathsf{Q}t} \langle n_i \rangle^* = \sum_{k=1}^N \left(\mathsf{V}_{j,k} e^{\lambda_k t} \mathsf{V}_{k,i}^{-1} \langle n_i \rangle^* \right).$$

Variances and correlations (continued...)

The NESS flux of a reaction is related to the cross-correlation functions by

$$\lim_{t \to 0} \frac{\langle \Delta n_{j}(t) \Delta n_{i}(0) \rangle - \langle \Delta n_{i}(t) \Delta n_{j}(0) \rangle}{t}$$

$$= \lim_{t \to 0} \frac{\sum_{k=1}^{N} \left(\mathsf{V}_{j,k} e^{\lambda_{k} t} \mathsf{V}_{k,i}^{-1} \langle n_{i} \rangle^{*} - \mathsf{V}_{i,k} e^{\lambda_{k} t} \mathsf{V}_{k,j}^{-1} \langle n_{j} \rangle^{*} \right)}{t}$$

$$= \sum_{k=1}^{N} \left(\mathsf{V}_{j,k} \lambda_{k} \mathsf{V}_{k,i}^{-1} \langle n_{i} \rangle^{*} - \mathsf{V}_{i,k} \lambda_{k} \mathsf{V}_{k,j}^{-1} \langle n_{j} \rangle^{*} \right)$$

$$= \mathsf{Q}_{j,i} \langle n_{i} \rangle^{*} - \mathsf{Q}_{i,j} \langle n_{j} \rangle^{*}$$

$$= q_{i,j} \langle n_{i} \rangle^{*} - q_{j,i} \langle n_{j} \rangle^{*}.$$

Furthermore, the one-way NESS fluxes can be calculated from the initial slopes of the individual cross-correlation functions.

НЕUETT, ECMTB 2005 13

Outline

- ★ The grand canonical model
- ★ Variances and correlations
- * Thermodynamics and reaction conductances
- ★ Conclusions and future work

Thermodynamics and reaction conductances

For the forward equation

$$\frac{d\langle n_i(t)\rangle}{dt} = \sum_{\substack{j=0\\j\neq i}}^{N+1} (\langle n_j(t)\rangle q_{j,i} - \langle n_i(t)\rangle q_{i,j}),$$

an associated backward equation exists. It can be written as

$$\frac{du_i(t)}{dt} = \sum_{\substack{j=0\\j\neq i}}^{N+1} \left[(u_j(t) - u_i(t)) \, q_{i,j} \right] \qquad \forall i \in \{1, 2, \dots, N\}$$

BCs: $u_0(t) = 1$, $u_{N+1}(t) = 0$

ICs: $u_i(0) = 0, \quad \forall i \in \{1, 2, \dots, N\}$

where

$$u_i(t) = \langle n_i(t) \rangle \frac{\pi_0}{\pi_i}.$$

Thermodynamics and reaction conductances (continued...)

The substitution allows for a physically meaningful potential function to be defined as

$$\mu_i(t) \triangleq \ln u_i(t) = \ln \langle n_i(t) \rangle - \ln \pi_i + \ln \pi_0.$$

and the chemical potential difference for a reaction between states i and j is

$$\Delta\mu_{i,j}(t) = \mu_i(t) - \mu_j(t) = \ln\frac{\langle n_i(t)\rangle q_{i,j}}{\langle n_j(t)\rangle q_{j,i}} = \ln\frac{J_{i,j}(t)}{J_{j,i}(t)}.$$

It follows that

$$(J_{i,j}(t) - J_{j,i}(t)) \Delta \mu_{i,j}(t) = (J_{i,j}(t) - J_{j,i}(t)) \ln \frac{J_{i,j}(t)}{J_{j,i}(t)} \ge 0,$$

which is equivalent to the second law of thermodynamics.

Thermodynamics and reaction conductances (continued...)

In terms of the chemical affinity, $u(t) = e^{\mu(t)}$, we have

$$\Delta u_{i,j}(t) = u_i(t) - u_j(t) = \frac{\langle n_i(t) \rangle \pi_0}{\pi_i} - \frac{\langle n_j(t) \rangle \pi_0}{\pi_j} = \frac{J_{i,j}(t) - J_{j,i}(t)}{\pi_i q_{i,j}} \pi_0$$

in which case

$$(J_{i,j}(t) - J_{j,i}(t)) \Delta u_{i,j}(t) = \frac{(J_{i,j}(t) - J_{j,i}(t))^2}{\pi_i q_{i,j}} \pi_0 \ge 0.$$
 (1)

This result bears a likeness to the linear Ohm's Law of electrical circuit theory. Considering this, a reaction conductance can be defined as

$$c_{i,j} \triangleq \frac{J_{i,j}(t) - J_{j,i}(t)}{\Delta u_{i,j}(t)} = \frac{\pi_i q_{i,j}}{\pi_0} = c_{j,i}.$$

Thermodynamics and reaction conductances (continued...)

The system

$$\frac{du_i(t)}{dt} = \sum_{\substack{j=0\\j\neq i}}^{N+1} \left[(u_j(t) - u_i(t)) \, q_{i,j} \right] \qquad \forall i \in \{1, 2, \dots, N\}$$

BCs: $u_0(t) = 1$, $u_{N+1}(t) = 0$

ICs: $u_i(0) = 0, \quad \forall i \in \{1, 2, \dots, N\}$

is equivalent to a random walk, where $u_i(t)$ is the expected number of times a walk, starting at state i at time t=0, reaches state 0 before reaching state N+1 and does so before time t has passed.

Furthermore, when this system is in NESS, it is equivalent to an absorbing Markov chain, describing the expected number of times a random walk, starting at state i, reaches state 0 before reaching state N+1.

Outline

- ⋆ The grand canonical model
- ★ Variances and correlations
- ★ Thermodynamics and reaction conductances
- * Conclusions and future work

Conclusions and future work

- ★ The grand canonical models provide a full understanding of linear networks.
- ⋆ Possibly useful experimental methods can be suggested.
- Currently we are studying the probability generating function and moment generating function approaches.
- * Further work needs to be done to generalize these methods to biochemical systems with bimolecular reactions.

Special Thanks

- ⋆ My advisor, Hong Qian
- ⋆ National Science Foundation VIGRE fellowship support
- ⋆ Department of Defense NDSEG fellowship support
- ★ SMB and ECMTB